PHYSICAL REVIEW E

VOLUME 51, NUMBER 1

JANUARY 1995

Steady squares and hexagons on a subcritical ramp

R. B. Hoyle*
Department of Applied Mathematics and Theoretical Physics, Univeristy of Cambridge, Cambridge CB3 9EW, United Kingdom
(Received 21 March 1994)

Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically,
within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external
stress or control parameter varies continuously in space from subcritical to supercritical values. At the
subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction
solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square
pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to
that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry
become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexa-
gons in systems which lack this symmetry might fade away through a roll pattern. Numerical simula-

tions are used to illustrate these phenomena.

PACS number(s): 47.20.Ky

I. INTRODUCTION

This paper concerns the behavior of square and hexag-
onal patterns subject to a space-varying external stress or
control parameter. When the control parameter varies in
space, connecting a subcritical to a supercritical region,
the region of variation is known as a subcritical ramp. In
the case of rolls, Kramer et al. [1] and Pomeau and
Zaleski [2] have shown that when the control parameter
varies slowly and smoothly in space, the subcritical ramp
perfectly selects the pattern wavelength, i.e., the band of
allowable wave numbers collapses to a single wave num-
ber. Riecke [3] has shown further that localized regions
where the control parameter varies rapidly lead to devia-
tions from this perfect selection. Malomed and Nepom-
nyashchy [4] considered rolls aligned at an arbitrary an-
gle to the ramp and showed that rolls parallel to the slope
of the subcritical ramp minimize the Lyapunov function-
al, whereas those orthogonal to the direction of variation,
which correspond to the purely one-dimensional situa-
tion, maximize the functional. Malomed [5] showed that
wave-number-selection effects also occur for one-
dimensional traveling waves on a subcritical ramp, within
the framework of both cubic and quintic complex
Ginzburg-Landau equations.

The question of how subcritical ramps affect higher-
dimensional patterns has not yet been explored. This pa-
per is concerned not with wave-number selection, but
with the changes in shape that stationary squares and
hexagons at the critical wave number experience under
the influence of a subcritical ramp. Both hexagons and
squares are often observed in physical systems; see, for
example, Hoyle [6], Golubitsky, Swift, and Knobloch [7],
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and references therein. In the context of Turing struc-
tures, Castets et al. [8] observed a pattern of hexagons
fading into rolls in a region of varying reactant concen-
tration during their experiments on nonequilibrium
chemical patterns in a single-phase open reactor.

In this paper, the changing patterns are investigated
using the appropriate- lowest-order envelope equations,
which were first introduced by Newell and Whitehead [9]
and Segel [10], and the paper is organized as follows:
Sec. II contains a theoretical analysis and Sec. III a nu-
merical simulation of the behavior of a square pattern on
a subcritical ramp, while Secs. IV and V contain the cor-
responding analyses for a supercritically bifurcating hex-
agonal pattern. The final Sec. VI contains a brief discus-
sion of the results.

II. SQUARES ON A RAMP

Consider a square pattern revealed in the variations of
a representative physical variable f(x,y,?), for example,
the fluid density in a convection experiment. The pattern
varies in the horizontal x and y directions, and also in
time ¢, and we shall assume that the physical variable can
be written

Fxp,0)=AX, Y, T)e "+ B(X,Y,T)e" " +c.c., (1)

where k, is the critical wave number for the onset of in-
stability, and the amplitudes 4 and B are functions of X,
Y, and T, the long modulation scales in the x, y, and ¢
directions, respectively. Close to the onset of the
pattern-forming instability, the control parameter or
external stress 7, for example, the Rayleigh number for a
convecting fluid, is given by 7 =¢€?r, say, where € << 1 and
r~0(1). If X=ex, Y=ey, T=¢€*t, A =€ A, and B=¢B,
with 4 ~0O(1) and B~O(1), then the rescaled ampli-
tudes 4 and B evolve according to the equations

Ar=rA—|A|*?A—A|B]?4+ Ayy+h.o.t., )
B;=rB—|B|’B —A|4|’B+Byy+h.o.t. , 3)
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where the control parameter r is real and is assumed to be
constant in space, A is a real O(1) constant, and h.o.t.
stands here and hereafter for higher-order terms. These
are essentially the same as the amplitude equations de-
rived for three-dimensional patterns by Newell and
Whitehead [9] and refined by Cross [11], except that here
spatial derivatives of third and higher orders are neglect-
ed. The coefficients of the terms | 4|24 and |B|*B must
be negative if squares are to be a stable solution and can
be set to —1 by rescaling the amplitudes. It can be
shown that squares 4 =R, B=R,, R3=r/(1+1) are
the stable, preferred pattern at the onset of instability for
r>0and —1<A<1.

If the rescaled control parameter r is now allowed to
vary slowly in space, so that r =r(X,Y), then to leading
order r can be replaced by r (X, Y) in the amplitude equa-
tions (Kramer et al. [1]; Pomeau and Zaleski {2]). The
simplification, made below, that the control parameter r
and the pattern amplitudes vary only in one direction re-
stricts the analysis to the treatment of patterns at the
critical wave number. However, the results should be
valid at leading order since the analysis of rolls on a sub-
critical ramp (Kramer et al. [1]; Pomeau and Zaleski [2])
suggests that any wave-number-selection effect would
occur at the next order in ¢, i.e., the wave number k
would be given by k =k, +€2q(X, Y, T) for some function
q(X,Y,T).

Choosing the X direction to be the one in which the
control parameter varies, the physical variable can be
represented by

Fx,p,0)=A(X,T)e " +B(X,T)e" " +c.c. @)

and the amplitudes 4 and B are governed by the equa-
tions

Ar=r(X)A —| A4 —AIBI*4 + Ayy , (5)
Br=r(X)B—|B|*B—A|A|’B . (6)

These leading-order amplitude equations are derived
from Eqgs. (2) and (3), neglecting the higher-order terms
and setting 9y =0. We shall consider the situation where
squares are stable at the bifurcation from the conduction
solution 4 =B =0, so we must have |A| <1.

Consider the situation where the control parameter
r(X) varies smoothly from subcritical r(X)—r; <0, as
X — — o, to supercritical r(X)—r, >0, as X— + 0.
The boundary conditions on 4 and B are easy to deter-
mine. As X — — o, the control parameter is subcritical,
rolls and squares are unstable, and the conduction solu-
tions is stable, so 4 —0,B—0. As X — + o, the control
parameter is supercritical, squares are stable, rolls
and the conduction solution are unstable, so
|A|1>—ry /(141),|B]2—r, /(14+A).

This system has a Lyapunov functional V' (T) given by

V=(r(X)|41*+r(X)|B|*—1| 4]*
—3BI*=AIBI| 4P| 4x?) , ™

where ( ) represents a spatial average over a horizontal
domain, which includes a “slice” of the ramp between
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y=y, and y =y, for any y, and y,. The Lyapunov func-
tional is always increasing with time since

Vp=2{|A471>*+|B;*)>0. (8)

It can be shown that ¥ <r2/(1—|[A]). So V is increasing
and bounded above, and therefore must tend to a station-
ary value ¥—¥,. This corresponds to a steady solution
for A and B.

Equation (6) can be rewritten

Br=B{r(X)—|BI*—A| 4%} . 9

The steady solutions for B then are B =0 and
|B|2=r(X)—\| 4|%; the second solution only exists when
r(X)—A| A|2>0. Linearizing around B =0 reveals that
B =0 is a stable solution if 7 (X)—A| 4|><0 and unstable
otherwise. Linearizing around |B|*=r(X)—A| 4|? shows
that this solution is stable to perturbations in B wherever
it exists.

Consider the quantity f(X)=r(X)—A|4[% As
X—— o0, f(X)—>r; <0, and as X—+ o,
f(X)—>r,/(1+1)>0, but f(X) must vary continuously,
so at some X =X, we must have f(X,)=0. Then, for
X <X,, the stable steady solution is B =0, and for
X >X, it is |B|>=r(X)—A| A|% this solution is continu-
ous at X =X,. From Eq. (6) it is clear that B (X, T) is not
constrained to be smooth in X, so this solution is perfect-
ly acceptable. It shall be assumed here that X, is unique,
so that B does not return to zero at any point when
X >X,, although it is possible that for some shapes of
r (X) this might happen.

If this solution for |B|? is substituted into the equation
for A; [Eq. (5)], and a steady solution 41=0 is sought,
then for X <X, Eq. (5) becomes

0=r(X)A—|AIPA+ Ayy , (10)
with solution 4 ,(X), say, and for X > X, it becomes
0=(1—AMr(X)4A —(1=A)| AP A+ Ayy , (11)

with solution A4,(X). The solution 4, must satisfy the
boundary condition as X — — o0, and 4, must satisfy the
boundary condition as X — + . Since the differential
equations for A are second order in X, 4 and 4y must
match at X,. This must be possible since the existence of
a Lyapunov functional guarantees the existence of a
steady solution; it is achieved by varying X, and any free
parameters in 4, and 4,.

At the very beginning, higher-order terms were
neglected in the amplitude equations. In particular,
derivatives of higher order than 2 were neglected. In for-
mulating the amplitude equations, it was assumed that
the pattern would only be modulated on long space and
time scales. However, close to X =X, the modulation is
rapid in space, and the higher-order derivatives will lead
to corrections to the “outer” solution found above. All
but one of the higher-order derivative terms will not be-
come important until 3y ~O(e™ '), i.e., until the assump-
tions that led to the amplitude equations in the first place
break down. However, there are currently no spatial
derivatives at all in Eq. (6); the first correction to this
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equation is to add a term —e€’Byyyy /4 to the right hand
side. This correction becomes important before
9y =~O0(e™!). The corrected version of Eq. (6) for steady
solutions is

2
O=r(X)B—lB(zB—MAIzB—%BXXXX. (12)

In the inner region close to X =X, the control parame-
ter #(X) and the square of the amplitude | 4|*(X) can be

expanded in Taylor series about X =X,. Writing
r(X,)=r,, this gives
rX)=r, +(X —X,)2 +o (13)
* *TOX |x=x,
r 3| 4|?
ARX)=—24+(X — R
[APX ="+ X X075 (14)
Substituting these expressions into Eq. (12) gives
2
0={c(x-x*)—lBP}B—%BXXXXJr e, (15)
where
or 3| A%
== —A .
¢ aX |x=x, X |x=x, (16)

If (X —X,) is now rescaled by €%, and B by €, then for
all the terms in Eq. (15) to be of the same order, it is re-
quired that a =% and b=1. So as stated above, the
correction comes in before 3y ~0(e!). The correction
to the amplitude is O (€!/°), which is smaller than the
O (1) outer solution as €e—0, and so there are no singu-
larities generated in the inner solution. Therefore, the
outer solution found above is a good approximation.
This scaling is very similar to that found by Manneville
and Pomeau [12] for a grain boundary between two or-
thogonal sets of rolls in an isotropic environment.

The outer solution, has the interesting feature that
when | 4|2=r, /A, B=0. So | 4| will be positive when B
is zero, over at least a small range of X, except in the spe-
cial case when r, turns out to be zero. Over this small
range of X an observer will see rolls with their axes
aligned along the y axis instead of squares. A square pat-
tern on a subcritical ramp will become a pattern of rolls
before it fades away into the conduction solution. The
roll axes will be aligned in the direction orthogonal to
that in which the control parameter varies.

III. NUMERICAL RESULTS FOR SQUARES
ON A RAMP

A numerical integration of the following equations,
Ar=r(p)A—|APA—A|BI?A + Axy , a7
B;y=r(p)B —|B|*B—A|A|?’B+Byy , (18)

is performed, using a pseudospectral code on a square
grid with 100 modes in each direction. The control pa-
rameter takes the form r(p)=1+3tanh10(x, —p), where
p=V'X?>+Y? and x,=10m. Note that r(p)<O

FIG. 1. Grey scale plot of f(x,p,0)=A4(X, Y)e'e
+B(X,Y)e" +cc. in the region —1.2xo<X < —0.8%,,
—0.2x0 < Y <0.2x,, with a subcritical ramp at X =~ —x,, where
xo=10m.

for p>x,+(&)tanh™'(1)~10.017, and r(p)>0 for
p<x0+(%)tanh’1(§). The system is in the parameter
regime where squares are stable since A=0.5. The
domain of integration is —2x,<X<2x, and
—2x,<Y <2x,. The control parameter is chosen to
vary radially so that the boundary conditions are approx-
imately periodic in the X and Y directions.

The initial profiles for the amplitudes are
A(X,Y)=B(X,Y)=1/3%, which is the approximate
steady solution as p—0. The amplitude equations (17)
and (18) are then integrated forward in time to find the
true steady solution. Figure 1 shows the reconstructed
pattern flx,p,t)=A(X, Y)elk”x—FE(X, Y)e * yc.c.
in the small region —1.2x;,<X <—0.8x,, —0.2x,
<Y <0.2x,, on the ramp where A and B are the steady
solutions found by integration. The critical wave
number is k.=10. The region shown in
Fig. 1 is small enough that the circular boundary
p=x,+(&)tanh~'(1), at which the control parameter r
is zero, looks approximately like the straight line

=—x,— (% )tanh ~!(1), so the theory developed in the
preceding section should apply here.

The numerical reconstruction shows a fully developed
square pattern in the supercritical region (r >0) to the
right of X =—x,—(5)tanh™'(1), which changes into a
pattern of rolls parallel to the Y axis close to
X=—x,—(%)tanh (1) (where r=0) and then fades
away into the conduction solution in the subcritical re-
gion (r <0) to the left of X = —x,—(%)tanh ™ '(1). This
is exactly what theory predicts.

A closer examination of the X and Y roll amplitudes
shows that both 4 and B are real [numerically Im( 4)
and Im(B) are O (107 19), so there is no phase winding at
lowest order, and that B does indeed decay to zero faster
than A4 as X — —2x, (Fig. 2). There is also some adjust-
ment of the amplitudes at the supercritical edge of the
ramp X = —x,— (5 )tanh™'(1)+8, where 0 <8 <<1, but
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FIG. 2. Plots of the X- and Y-roll amplitudes, 4 and B, re-
spectively, across a subcritical ramp. The solid curve shows
A (X,Y =0) and the dotted curve shows B(X,Y =0). At Y =0,
the control parameter r is zero at X = —10m, positive for
X2 —10m, and negative for X S —10m. The curves appear
jagged because there are only a few integration points in the re-
gion shown on the plot.

this has less effect on the overall pattern, since 4 and B
are of comparable size there.

IV. HEXAGONS ON A RAMP

Consider a steady hexagonal pattern. The physical
variable f, in whose variations the pattern is revealed,
can be represented as

f oy = A(X,Y,T)e""
FB(X, Y, Te T2

ik (—x —V3y)/2

+C(X,Y,Te +c.c. (19)

where k, is the critical wave number for the onset of the
pattern-forming instability, and X, Y, and T are long
modulation scales in the x, y, and ¢ directions as before.
Again, close to onset the control parameter 7 is given by
F=é€’rand if X =ex, Y=ey, T=€’t, A=€ A, B=¢€B, and

C =¢€C, then the rescaled amplitudes A, B, and C evolve
according to the equations

Ar=rA+aBC—v,| 4?4 —v,(|B>*+|C|*)4 + Ayy ,

By=rB+aAC—v,|B|*B—v,(|C|*+| 4|*)B =
+1(3y—V33y 7B , 21)

Cr=rC+adB—v,|C|*)C—v,(| 4]|*+|B|})C
+1(3y+v33y)°C , (22)

where the control parameter 7 is real O (1) and constant
in space, a is a real constant of size O (€) before rescaling,
v, and v, are real O (1) constants, and higher-order terms
have been neglected. Again, these are of the same form
as the envelope equations derived for three-dimensional
patterns by Newell and Whitehead [9], except that spatial
derivatives of higher order than 2 are neglected.

If the control parameter varies in space, then to lead-
ing order, r can be replaced by r(X,Y) in the amplitude
equations. This time the ramp is chosen to vary in the ¥

direction, and the amplitudes A4, B, and C are assumed to
vary in the Y direction only. The physical variable is
now given by

Flxep,0)=A(Y,T)e " +B(Y,Te
ik (—x—V3p)/2

ik (—x +V3y)/2

+C(Y,Te +c.c. (23)

and the relevant amplitude equations are

Ar=r(Y)4 +aBC—v|| A4 —v,(|IB>+|C|)4 , (24

B;=r(Y)B +aAC—v,|B|*B —v,(|C|*+|4]*)B
+23%B, (25)

Cr=r(Y)C+adB—v,|C]*’C —vy(| 4>+ |B|*)C
+235C . (26)

These equations are derived from Egs. (20), (21), and (22),
setting dy =0. The control parameter r(Y) is assumed to
be real, varying from subcritical [r(Y)—r;<0] at
Y — — o to supercritical [#(Y)—r,>0] at Y— +oo. If
a70, the system is not invariant under the transforma-
tion f— —f, whereas if a=0, it is. This invariance is
equivalent to symmetry under reflection in the midplane
in a convecting layer (see, for example, Golubitsky, Swift
and Knobloch [7]).

Let us consider the asymmetric case a70. Without
loss of generality, a can be chosen to be positive, since
the problem can always be reduced to this case by means
of the transformation f——f. If (v;+2v,)>0, then
hexagons bifurcate transcritically from the trivial solu-
tion, and there is a branch of stable hexagons
[4=B=C=R, r,+aR,—(v;+2v,)R{=0] in the re-
gion r>—a?/4(v;+2v,) and r<oew Gf v;>wv,) or
r<a¥2vi+v,) /(vi—v,)? G vi<wy). If ri<—a?/
4(v,+2v,), then as Y— — o, the conduction solution
will be stable, and if v,>wv,, or if v;<v, and
r, <a?(2v;+wv,)/(v;—w,)% then as ¥ — + o, steady hex-
agons will be stable. This situation is much harder to an-
alyze than the square case. If it is assumed that
B(Y)=C(Y) for the steady solution, which symmetry
would suggest, then it is clear from Eq. (24) that 4 =0
implies B =C =0 if a#0, and so the analogous situation
to that described above for squares cannot occur. How-
ever, B=C =0 does not imply 4 =0, so a region of rolls
is possible, and this suggests, although in no way demon-
strates, that the hexagonal pattern might fade away into
the conduction solution via a pattern of rolls. In this
case, however, the rolls would lie parallel to the Y axis,
and not, as experimental observation [8] would suggest,
perpendicular to it.

If there is symmetry under reflection in a horizontal
midplane, for example, convection in a Boussinesq fluid
with identical boundary conditions on the top and bot-
tom plates, we have a=0. If v;+2v,>0, then hexagons
bifurcate supercritically from the trivial solution. If,
also, v;>v, (note that this implies v;>0), then steady
hexagons at the critical wave number are stable for » >0,
and the analysis is very similar to the analysis in the
square case.

There is a Lyapunov functional V' (T) given by
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V(T)={(r(Y)]|A|*+ |B|2+|c|2>——v2—‘(lA|4+1314+ ICl*))

+ (=vy(| 41*[B>+|BI*[CI*+|CI*| A1) — 3(IBy >+ [Cy[*)) . 7

This is always increasing since
Vr=2{|A7|*+|B7|*+|Cy|*> >0 (28)

It can also be shown that ¥V is bounded above by
3r3/2(v;—wv,) for v,>0, and by 3r3/2(v,+2v,) for
v,<0. So Vis increasing and bounded above and there-
fore must tend to a stationary value ¥ — ¥V,. This corre-
sponds to a steady solution for 4, B, and C.

Under the assumption that B(Y)=C(Y) for the steady
solution, it is found that for Y <Y, the amplitudes A4
and B satisfy the equations

A =0, (29)
r(Y)B —(v;+v,)|BI’B+3Byy =0, (30)
andfor Y>Y,,
|4l =——{r(N)=2m,|B I} , (31)
1

0= (vi—wv,) H(T)B— (vi— vy (v +2v,
v

1 Y1

)
[BI*B+3Byy .

(32)

The rest of the analysis goes through in the same manner
as for the square case, and it is found that at Y=Y,
A =0, but |B|*=|C|*>=r, /2v,>0.

This shows |B| and |C| will be positive when A4 is zero,
over a small range of Y close to Y, except in the special
case when r, turns out to be zero. In this region, an ob-
server would expect to see rectangles instead of hexagons.

V. NUMERICAL RESULTS FOR HEXAGONS
ON A RAMP
A numerical integration of the following equations,
Ar=r(p)A —v| AI?A—v,(|B*+|CI2)A + Ayy , (33)
Br=r(p)B—v,|B|’B —v,(|C|2+| 4|")B

+1(3,—V303y)*B , (34)
Cr=r(p)C—v,|C|>C—wv,(| 42+ |B|>)C
+1(d3y+v33y)%C, (35)

is performed using a pseudospectral code on a square grid
with 100 modes in each direction. The control parameter
takes the form r(p)=1+3tanhl0(y,—p), where
p=V'X?+Y? and y,=107. This is very similar to that
used in the square case, and it can be seen that r(p) <0
for p>yo+(4)tanh~1(1)=~10.017, and r(p)>0 for
p<yo+(&)tanh~!(1). Here v;=2 and v,=1, so that
steady hexagons at the critical wave number are stable.

The domain of integration is —2y;<X <2y, and
—4y,/V'3<Y <4y,/V'3. The control parameter is
chosen to vary radially once more, so that the boundary
conditions are approximately periodic in the X and Y
directions.

The initial profiles for the amplitudes are
A(X,Y)=B(X,Y)=C(X,Y)=1, which is the approxi-
mate steady solution as p—0. The amplitude equations
(33), (34), and (35) are then integrated forward in time to
find the true steady solution, in the same way as for
squares. The moduli of the steady solutions, 4, B, and C,
at X =0 and for —12.0m <Y < —7.5m, are shown in Fig.
3. The middle point of the subcritical ramp, where r =0,
is at Y=~—107. In this region, the subcritical ramp is
approximately straight and aligned along the X axis, so
the theory developed in the preceding section should ap-
ply. It can be seen that the curve for |B| lies on top of
that for |C| and also that | 4| does decay to zero faster
than |B| and |C| as Y— —4y,/V'3, as suggested by the
theory. The amplitudes A4, B, and C are approximately
real [numerically, Im(A4) is O(107!%) and Im(B) and
Im(C) are O(1072)], so there is no phase winding at
lowest order. The larger order of magnitude for Im(B)
and Im(C), as compared to Im( 4), probably arises from
the curvature of the subcritical ramp. These results sug-
gest that a hexagonal pattern changes into a pattern of
rectangles as it fades away into the conduction solution,
just as theory predicts.

Figure 4 shows the reconstructed pattern

~ ;i - . _ ‘/_
fxop,0=A(X, Ve +B(X, v)e" V)2

—ik,(x +V3y)/2

+C(X,Ye +c.c.

1.2] - " ' y
tof

0.8

I

T

0.8

Moduli

' P W T

0.4

T

0.2f

0.0C
-12 -11 -10 -9 -8
Y/

FIG. 3. Plots of the three roll amplitudes, 4, B, and C, for a
hexagonal pattern on a subcritical ramp. The solid, dotted, and
dashed lines show the moduli of 4 (X =0,Y), B(X =0,Y), and
C(X =0,Y), respectively. At X =0, the control parameter is
negative for Y < — 107 and positive for YR —107. The curves
appear jagged as in Fig. 2 because the region of the plot only in-
cludes a small number of integration points.
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i
of flx,p,)=A(X,Y)e
—ik,(x +V73y)/2

FIG. 4. Grey

- ik (—x+V3 ~
+BX, Ve T L ex, e +c.c. in the re-
gion —0.1y, <X <0.1y,, —1.2y5 <Y < —0.97y,, with a sub-
critical ramp at Y ~ —y, where y, = 10.

scale plot

in the small region —0.1y,<X<0.1y,, —1.2p,
<Y < —0.97y,, on the ramp, where A4, B, and C are the
steady solutions found by integration. The critical wave
number is k,=12. The region shown in Fig. 4 is
small enough that the circular boundary p=y,
+(%)tanh‘l(§), where r =0, appears to be a straight

line Y=—p,—(%)tanh~!(1). The hexagonal pattern
changes into a pattern of rectangles (barely visible on the
plot) as it fades away into the conduction solution, just as
predicted by the theory.

VI. DISCUSSION

The results in this paper show that three-dimensional
patterns on a subcritical ramp may change shape as they
fade away into the conduction solution. A square pattern
becomes a pattern of rolls before it reaches the conduc-
tion solution. The roll axes are aligned in the direction
orthogonal to that in which the control parameter varies.

For hexagons, the situation is more complicated. In
systems without symmetry under reflection in the hor-
izontal midplane, the lowest-order amplitude equations
suggest that hexagons might change into a pattern of
rolls on the ramp. In systems with the midplane symme-
try, hexagons become a pattern of rectangles before fad-
ing away into the conduction solution.
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FIG. 1. Grey scale plot of fl(x,y1)= A(X, Y)e'k‘x
+B(X, Ve +cc. in the region —1.2xo<X <—0.8x,,
—0.2x, < ¥ <0.2x,, with a subcritical ramp at X =~ —x,, where
Xg= 101,



FIG. 4. Grey scale plot of f(x,y,r)=1(X,Y)ejk‘x

i -x V3 —ik (x V3
+B(X,Y)e hel mE 3ym+C'(X,Y)e R (XTVINE | o c. in the re-
gion —0.1y, <X <0.1yy, — 1.2y, <Y < —0.97p,, with a sub-
critical ramp at Y =~ —y, where y, = 107.



